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0. Introduction

* In [12], Gromov introduced a metric (Hausdorff distance) on the class of all
metric spaces. There, he proved the precompactness of the set consisting of
the isometry classes of Riemannian manifolds with bounded curvatures and
diameters. In this paper we shall study the structure of the closure of this
set.

Definition 0.1. For a natural number n and D € (0, 00|, we let .# (n, D)
denote the set consisting of all isometry classes of compact Riemannian mani-
folds M such that

- (0.2.1) the dimension of M is equal to n,

© (0.2.2) the diameter of M is smaller than D,

~(0.2.3) the sectional curvature of M is smaller than 1 and greater than —1.

" The following problem is fundamental in the study of the Hausdorff distance
on A (n,D).

Problem 0.3. (A) Determine the closure of .# (n,D) with respect to
the Hausdorff distance. (Hereafter &4 (n, D) denotes the closure.)

(B) Let X; (¢ =1,2,---) be a sequence of elements of &£# (n, D). Suppose
X; converges to a metric space X with respect to the Hausdorff distance.
Then, describe the relation between the topological structures of X; and X.

Our main result on Problem 0.3(A) is Theorem 0.5 and those on Problem
0.3(B) are Theorems 0.12 and 10.1.

First we deal with Problem 0.3(A). Let F24,, denote the set of all pointed
compact Riemannian manifolds (M,p) satisfying (0.2.1) and (0.2.3), and
EFM,, the closure of F#, with respect to the pointed Hausdorff distance
(see 1.6). If M € &#'(n,D) then (M,p) € ERA, for each p € M. We let
M (n, D, u) denote the set of the elements of .# (n, D) whose injectivity radii
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are greater than y. Put

Int(A (n, D)) = U EH (n,D,p),
pn>0

0M (n, D) = Bl (n, D) — Int(# (n, D)).

Int(F4,) and d.FH,, are defined similarly.

Gromov, in [12], proved that the elements of Int(%##,,) are manifolds. In
general, elements of .74, have singularities. Several examples of elements
of 024, can be constructed with help from torus actions and more generally
from F-structures (see (3], [18]). One of the main theorems of this paper
asserts that every element of R4, is locally of this type. To state it, we
need a definition.

Definition 0.4. We say elements (X,pp) and X of F%4#, and
&M (n,00) are smooth if they satisfy the following:

For each point p of X, there exist a neighborhood U of p in X, a compact Lie
group G, and a faithful representation of G, into the orthogonal group, O(n),
such that the identity component of G}, is isomorphic to a torus and that U is
homeomorphic to V/G, for some neighborhood V of 0 in R™. Furthermore
there exists a Gp-invariant smooth Riemannian metric g on V' such that U is
isometric to (V/Gy, g), where g denotes the quotient metric.

Theorem 0.5. Smooth elements are dense in EPH,, with respect to the
pointed Lipschitz distance. In particular, every element of ERM,, is homeo-
morphic to a smooth one.

Theorem 0.5 gives us complete information on the local topological struc-
ture of the elements of %4#,. Our result on global structure is not yet
complete.

Theorem 0.6. Let X € €PH,,. Then there exists a Riemannian mani-
fold M on which O(n) acts as isometries such that the following holds.

(0.7.1) X is isometric to M/O(n). (Let P: M — X be the projection.)

(0.7.2) For each point p of X the group {g € O(n) | g(p) = p} is isomorphic
to Gy, where Gy, is as in Definition 0.4.

By virtue of Theorem 0.5, the Hausdorff dimension of each element of
G P, is an integer. Inspecting this fact, we define stratifications on %4,
and &4 (n, D) as follows. '

Definition 0.8.

EMi(n,D) = {X € E# (n,D) | (Hausdorff dimension of X) < n — k},
EFRMy k = {(X,p) € G&FRH#, | (Hausdorff dimension of X) < n — k}.

[12, 8.39] implies E4, (n, D) = 8.4 (n, D).
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Our next result concerns the metric structure of the smooth elements of
EFMy,. Let (X, po) be a smooth element of EFH,, —EFHy, k1. Then X has
a stratification X = Sp(X) D S$1(X) D -+ D Sk(X) such that S;(X)—S;+1(X)
is a (k —7)-dimensional smooth Riemannian manifold. In the case when X is
not necessarily smooth, we define a stratification on X using that of a smooth
one and the Lipschitz homeomorphism given by Theorem 0.5. [7, Example
1.13] or [16] shows that we cannot obtain an upper bound of the sectional
curvatures of S;(X) — S;+1(X) while X moves on E%#,. But we have the
following.

Theorem 0.9. Let (X;,p;) be a sequence of smooth elements of
EPM y, - —E Pl k1 and (X, po) a pointed metric space. Assume that (X, pi)
converges to (X,po) in the sense of the pointed Hausdorff distance. Then X
is contained in EPHy, k+1 f one of the following two conditions is satisfied.

(0.10.1) There ezist a positive ¢ and a positive integer § such that

(0.10.1.a) p; € S;(X;) and d(p;, S;+1(X;)) > ¢, and

(0.10.1.b) the sectional curvatures of S;(X;) — S;41(X;) at p; are un-
bounded.

(0.10.2.a) p; satisfies (0.10.1.a) and

(0.10.2.b) the injectivity radius of S;(X;) — S;4+1(S;) at p; converges to 0
when 1 tends to infinity.

Furthermore, in the case when (0.10.1) holds, we have pg € S1(X).

Theorems 0.5 and 0.9, combined with [9], [19] or [12, 8.28], imply the
following.

Corollary 0.11. Let {X,pg) be a (not necessarily smooth) element of
G PHy,. Then Sk(X) — Sk+1(X) is a Riemannian mantfold with continuous
metric tensor and C1'-distance function, where o is an arbitrary number
contained in [0,1). '

Next, we shall describe our results from Problem 0.3(B). In the case when
X; € Int(# (n, D)) we have the following:

Theorem 0.12. Let M; € Int(# (n,D)) and X € E# (n, D). Suppose
lim; oo du(M;, X) = 0. Then, for each sufficiently large ¢, there exists a
differentiable map f: M; — X satisfying the following.

(0.13.1) For each j, the restriction of f to f~1(S;(X) — Sj+1(X)) is a fiber
bundle whose fiber 1s diffeomorphic to an infranilmanifold.

(0.13.2) Let pp € X ~ S1(X), pe X, F = f~Y(p—0) and G, be the group
given in Definition 0.4. Then G, acts freely on F and f~'(p) is diffeomorphic
to the quotient space F/Gp.

More precise informations on the map f and on its relation to the metric
structures of X and M; are in §10. In the case when X; € .4 (n, D), we can
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prove a similar result. But, since the result is a bit complicated, we do not
state it here (see §10), and restrict ourselves to the following simple case.

‘Theorem 0.14. EZA#, ; — EFRM,, x+1 15 complete with respect to the
pointed Lipschitz distance. The pointed Hausdorff distance and the pointed
Lipschitz distance define the same topology on it.

In the case when k& = 0, Theorem 0.14 follows from the results of [12].

In the course of the proof of Theorem 0.12, we shall prove the followmg
finiteness theorem.

Theorem 0.15. For each n and D < oo, there exists a finite set & of
manifolds whose dimensions are not greater than n + (n — 1)(n — 2)/2 and
which satisfy the following. For each element M of M(n, D), there exists a
smooth map f from the bundle of orthonormal frames of M to an element of
¥, such that f is a fiber bundle with an infranilmanifold fiber.

The following result is a direct consequence of Theorem 0.15.

Corollary 0.16. sup{}_, rank(H;(M;K)) | M € M(n,D),K: field} is
finite for each D < co and n.

By a different method, M. Gromov proved in [11] the same conclusion
without assuming that sectional curvature is less than or equal to 1.

The organization of this paper is as follows. In Chapter I, we shall prove
Theorem 0.5. In §2, we take an element (X, po) of &##,, and prove that, to
verify Theorem 0.5, it suffices to show that X is smooth if (X, po) is a limit of
pointed Riemannian manifolds (M;, p;), the derivatives of whose curvatures
are uniformly bounded. In §3, we shall represent a neighborhood of each point
of X as the quotient B/G of a Riemannian manifold B by a smooth action
of a Lie group germ G. For this purpose, we shall pull back the metrics of
M; to their tangent spaces T, (M;), following [12, 8.33-8.36], and represent
neighborhoods of p; as the quotient spaces B/T;. Taking the limit, we obtain
B and G. In §4, we shall prove that G is nilpotent. The proof of Theorem
0.5 is completed in §5.

Chapter II is devoted to the study of Problem 0.3(B). In §6, we shall
introduce the set .F%#, consisting of the frame bundles of the elements of
Py, and shall prove that the smooth elements of the closure EF R4, are
Riemannian manifolds. In §7, we shall give an estimate on the sectional
curvatures of the smooth elements of ZF%#,,. In §8, we shall prove Theorem
0.15. In §9, we shall prove an equivariant version of the result of [6], which is
used in §10 to prove our results on Problem 0.3(B). The proof of Theorems
0.6 and 0.9 is also in §10.

In §1, we gather several notations used in this paper. The reader can sk1p
this section and return there when §1 is explicitly quoted.



A BOUNDARY OF RIEMANNIAN MANIFOLDS 5

Some of the results of this paper were announced without proof in [7].
There we also gave several examples and open problems. See also [3], [4], [5],
[6], and [18] for related results, and [8] for an application.

The author would like to thank the referee who pomted out an error in the
first version of this paper. :

1. Notation and preliminary considerations

In this section, X and Y denote metric spaces, pp € X, g € Y, and M
denotes a. Riemannian manifold.

Notation 1.1. We put

Bp(po,X) ={p € X | d(po,p) < D},
B(D) = Bp(0,R"), B =B(l).

Notation 1.2. Let C(X,Y) denote the set of continuous maps from X
to Y. We define a metric d on C(X,Y) by '

d(f, g) = sup{d(f(z),4(z)) | = € X}.
Notation 1.3. Set

FM ={(V4, -+ ,Vu) | (V1,--- ,Vy) is an orthonormal base of
the tangent space of a point of M}.

We define a metric on F'M as follows. Let m: FM — M be the natural projec-
tion. The fiber of  is identified with the orthogonal group O(n). Fix a canon-
ical metric on O(n). For each ¢ € FM, using the Levi-Civita connection, the
tangent space T,(FM) is decomposed into the vertical subspace Ty(7~17(q)),
and the horizontal subspace H,. We. define a metric on Tg(r™ 17 (q)) using
the canonical metric on O(n) and on Hy so that dr: Hy — Tr(q)(M) is an
isometry. Also, we let the horizontal and the vertical subspaces be orthogonal.
Thus we obtain a metric on FM. The group O(n) acts as isometries on FM,
and the quotient space FM/O(n) with the quotient metric is isometric to M.

Notation 1.4. Let ~ be a selfisometry of M. Assume that p € M
and that d{p,~y(p)) is smaller than the injectivity radius of M at p. Let
{: [0,¢9) — M denote the minimal geodesic connecting p with ~(p). (We
assume that [ has unit speed.) Let P: Ty,)(M) — T,(M) denote the parallel
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transformation along . We set

to() = to - §(0),
ro(7): Tp(M) = Tp(M): V = P(dr(V)),
mp(7): Tp(M) — Tp(M): V = P(d(V)) + to(7),
|lp(7)|| = the supremum of the angles between V' and rp(7)(V),

lmp (NI = lirp (DN + e (V-
Notation 1.5. We put

A (n,D | C)={M | M satisfies (0.2.1), (0.2.2) and the sectional
curvature of M is smaller than C and greater than — C}.
P, (C) = {(M,p) | M € #(n,00| C)}.

(We do not assume that the elements of Z#,,(C) are compact.)

Definition 1.6. We recall the definition of the e-Hausdorff approxima-
tion and its pointed version. A (not necessarily continuous) map f: X —» Y
[resp. (X,po) — (Y,q0)] is said to be an e-Hausdorff approzimation [resp.
e-pointed Hausdorff approzimation] if

(1.7.1) The e-neighborhood of f(X) contains Y [resp. By /¢(qo,Y)]-

(1.7.2) For each two elements z,y of X [resp. By (po, X)] we have

ld(z,y) — d(£(2), f(W))| < e.

We define the Hausdorff distance [resp. pointed Hausdorff distance] du(X,Y)
[resp. du((X,po), (Y, q0))] to be the infimum of the positive numbers € such
that there exist e-Hausdorff approximations {resp. e-pointed Hausdorff ap-
proximations] from X to Y and from Y to X [resp. from (X, pg) to (Y, qo)
and from (Y, qo) to (X, po)].

Notation 1.8. We let di,(X,Y) and di((X, po), (Y, g0)) denote the Lip-
schitz distance and the equivariant Lipschitz distance, which is defined in [12,
Chapitre 3A].

Definition 1.9. Next, we need equivariant versions of the notion of the
Hausdorff distance. Let G and H be groups acting as isometries on X and Y
respectively. A pair of maps (f,¢), f: (X,p0) — (Y, ), ¢: G — H, is said
to be an e-pointed equivariant Hausdorff epprorimation if the following hold.

(1.10.1) f is an e-pointed Hausdorff approximation.

(1.10.2) For each g € G and z € X, we have

d(p(g)(/()), f(g(2))) <&

if z and g(z) are contained in By /¢ (po, X), and if f(z), f(g(z)) and ©(g)(f(z))
are contained in B, .(qo,Y).
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Let the pointed equivariant Hausdorff distance, deu.((X,G,po),
(Y,H,q)), denote the infimum of the numbers € such that there exist e-
pointed equivariant Hausdorff approximations from (X,G,po) to (Y, H,qo)
and from (Y, H,qg) to (X, G, po). The nonpointed version is defined similarly.
The equivariant Hausdorff distance defined here is equivalent to that of [5].
Therefore, [5, Theorem 2.1] implies the following:

Lemma 1.11. If

Lrlgo deH((X1 Ga p0)1 (Yv Hv QO)) = 0’

T

then
Jim du((X/G,po), (Y/H,{o)) = 0.

Definition 1.12. Suppose that a group G acts on X and Y as isome-
tries. We say a map f from X to Y is an e-G-Hausdorff approzimation if
(f,identity): (X,G) — (Y,G) is an e-equivariant Hausdorff approximation.
We define the G-Hausdorff distance, dg_.g(X,Y), to be the infimum of the
positive numbers ¢ such that there exist e- G-Hausdorfl approximations from
X toY and from Y to X.

Lemma 1.13. Let .# (n, D;G) denote the set of pairs (M, x) of Rieman-
nian mantfolds M contained in # (n, D) and an isometric action ¥ of G on
M. If D < oo, then # (n,D;G) 18 precompact with respect to the G-Hausdorff
distance.

We omit the proof, which is an easier half of the argument presented in [5,

§3).

CHAPTER 1
SINGULARITIES OF THE ELEMENTS OF THE BOUNDARY

2. Reduction to the case when the differentials
of the curvatures are bounded

First we recall the following result. (The symbol dy, is as in 1.8.)

Theorem 2.1 (Bemelmans, Min-Oo & Ruh [1]). For each positive
number € and Riemannian manifold M € 4 (n,00), there exists a Rieman-
nian mantfold M' € # (n,o00) such that

(2.2.1) dL(M,M') < ¢,
(2.2.2) IVER(M")|| < C{(n, k,e).
Here the symbol R(M') denotes the curvature tensor, || || the CO-norm, and

C(n, k,&) a positive number depending only on n,k and €.
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Secondly we need the following. (The symbol dy is defined in 1.6.)
Lemma 2.3. Let X;,Y;, X,Y be metric spaces, all of whose bounded sub-
sets are relatively compact. Suppose that

lim dg(X;, X) =0, lim du(¥;,Y) =0,
1O 100

and that di,(X;,Y;) < €. Then we have d,(X,Y) < e.

Proof. We may assume dy(X;,X) < 1/¢ and du(Y;,Y) < 1/i. Then
there exist (1/7)-Hausdorff approximations ;: X — X, ¢;: ¥; = Y. On the
other hand, since dy, (X}, Y;) < ¢, there exist homeomorphisms f;: X; — Y;
satisfying
(2.4) e~ < d(fi(z), f(y))/d(z.y) < ¢
for each z, y € X;. :

Next, take a dense countable subset X of X. By a standard diagonal pro-
cedure, we may assume, by taking a subsequence if necessary, that v f;0i(z)
converges for each z € Xy. Let f/(z) be the limit. Then formulas (1.7.2) and
(2.4) imply
(2.5) e~ < d(f'(2), f'(y))/d(z,y) < €
for each z, y € Xg. Therefore f' can be extended to a homeomorphism
f: X — Y satisfying (2.5). The required inequality dp,(X,Y) < ¢ follows.
q.e.d.

Now we start the proof of Theorem 0.5. Let (X,pp) be an arbitrary ele-
ment of %4,. Then there exists a sequence (M, p.) of elements of ##,,
such that lim;_ oo du((X,po), (M{,p;)) = 0. Hence, Theorem 2.1 implies
that, for each positive number ¢, there exists (M;(e),pi(e)) € P4, such
that di((Mi(e), pi(e)), (M, p})) < € and

(2.6) IV*R(M;(e))]| < C(n, k,€).

Since E%#4,, is compact [12, 5.3], we may assume, by taking a subsequence if
necessary, that (M;(g),p;(g)) converges to a metric space (X (&), po(e)) with
respect to the Hausdorff distance. Then Lemma 2.3 implies dy, (X, X(¢)) < e.
Thus, we see that to prove Theorem 0.5 it suffices to show that X(¢) is a
smooth element of &##,,. The proof of this fact occupies the rest of this
chapter. Hereafter we shall write (M;, p;) and (X, po) instead of (M;(¢€), pi(¢))
and (X (g}, po(€)), for simplicity.

3. Construction of the Lie group germ

Some part of the argument of this and the next sections overlaps with that
of [12, 8.30-8.36 and 8.48-8.51]. But, since the argument here is a bit delicate
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and since the author cannot understand some part of the argument there, he
will not omit the overlapped part.

By changing a base point, we see that it suffices to show that a neighbor-
hood of p is smooth. We may assume that dg((X,po), (Mi,p;)) < 1/i. Let
it (X,po) — (M;,p;) denote a (1/7)-Hausdorff approximation and f;: R® —
M; the composition of a linear isometry R™ — T, (M;) and the exponential
map Tp, (M;) — M,;. By Rauch’s comparison theorem (see [15, Chapter VIII,
Theorem 4.1]), the map f; is of maximal rank on the unit ball B (see 1.1).
Let g; (= gi;jx): B — R™ be the Riemannian metric tensor induced by fi
from that of M;. Formula (2.6) implies that

< (.

8'gi5 k
0%, Oy, + - Oy,

It follows that we may assume, by taking a subsequence if necessary, that
g; converges to a C°-metric tensor go. Hereafter we let d; (7 = 0,1,2,---)
denote the distance function associated to g; and d the ordinary Euclidean
distance.

First, we shall construct a local group G of isometries such that a neigh-
borhood of pg in X is isometric to U/G for a neighborhood U of 0 in B. The
fundamental definitions on local groups are presented in [20, §23D,--- ,NJ.
There the notion of an action of a local group on a pointed topological space
is not defined. But we omit the definition, since it can be defined in an obvious
way.

Now, we define the local group G; as

Gi={y€C(B(1/2),B) | fiv= fi},
where C(A, B) is as in 1.2. The local group structure on G; is defined as
follows: for ~1,72,vs € G;, we put 7172 = 73 if the composition ;7 is well

defined and coincides with ~3 in a neighborhood of 0. Next, for p € B(1/2)
and ¢ > 0, we put

Gi(p,e) = {f € Gi | d(f(p).p) < e}.
Second, we shall take the limit of G;. Put
L={feC(B(1/2),B) | 1/2 < do(f(2), f(y))/do(z,y) < 2 |
for each z,y € B(1/2)}.
Ascoli-Arzela’s theorem implies that L is compact. It is well known that the
set of closed subsets of a given compact set is compact with respect to the
(usual) Hausdorff distance. Therefore, by taking a subsequence if necessary,

we may assume that G; converges to a closed subset G of L. We can define a
local group structure on G by a method similar to that for G;.
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Remark that when a local group H acts as isometries on a pointed met-
ric space (Y,p), the isometry type of a neighborhood of (pmod H) in the
quotient space Y/H is well defined (see [20, §23J]). We shall let this “lo-
cal metric space” be denoted by (Y¥,p)/H. In our case, (B(1/2,0),0)/G; is
isometric to Bj/2(pi, M;). (Furthermore, in our case, the 1/2-neighborhood
of (0mod G;) is well defined.) This fact, combined with Lemma 1.11, im-
plies that (B(1/2,0),0)/G is isometric to By o(po,X). Let 7: B(1/2) —
B1/2(po, X) and m;: B(1/2) — By 2(pi, M;) denote the natural projections.

Third, we shall prove that our local group G is a Lie group germ. This fact
follows from the following:

Lemma 3.1. Suppose a local group G acts effectively on a pointed
Riemannian manifold (M,p) as isometries. Assume that G is closed in
C(Bp/2(p, M), Bp(p, M)). Then G is locally isomorphic to a Lie group and
its action on (M,p) is smooth. '

Proof. This lemma seems to be known by the experts. But, since it seems
that this fact is not proved in the literature, the proof will be given below.
Let g’ be the set of all vector fields £ such that the following condition holds.

Condition 3.2. There exists a smooth map ¢: (—¢,€) — G satisfying
the following. (Since G is contained in a Frechet manifold C(Bp/2(p, M),
Bp(p, M)), the smoothness of a map from (—¢,¢) to G is well defined.)

(3.2.1) ©(0) = identity,
Do(t)(®)| _
(3.2.2) & |, &(p).
Now since
D1 (t)pa(t) _ Deu(t) Dopa(t)
at t=0 2 P 2 P
and since
FeOneioeto) =220 2e0) |

it follows that g’ is a Lie algebra. Let G' be the local set consisting of all
one-parameter groups of transformations associated with the elements of g'.
Using the fact that g is a Lie algebra, we can prove easily that G’ is a Lie
.group germ. . :

Sublemma 3.3. G’ i3 a sub-local group of G.

Proof. Suppose that € € ¢’ and that ¢: (—¢,€) — G satisfies Condition
3.2. Let ®; denote the one-parameter group of transformations associated
with €. We shall prove that ®;, € G for small to. Put 4, = (p(to/n))".
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Using (3.2.2), we can prove lim, o ¥ = ®;,. On the other hand, since G is
closed, it follows that ®;, € G. q.e.d.

Now, to prove Lemma 3.1, it suffices to show the following:

Sublemma 3.4. G’ contains a neighborhood of the identity of G.

Proof. Suppose that the sublemma is false. Then there exists a sequence
of elements ~; of G — G’ which converges to the identity. Here we need a
simple trick to make the action of G free. Let F M be as in 1.3. The action of
G can be lifted to a free isometric action on F'M. Take an element g of FM.
Now, by replacing elements ~; if necessary, we may assume the following:

(3.5) The minimal geodesic [; connecting g with ~;(g) is perpendicular to
the orbit G'(q).

Now, since ~; converges to the identity map, we may assume, by taking
a subsequence if necessary, that there exists a strictly increasing sequence n;
of positive integers such that 4" converges to a nontrivial element ~. Then,
fact (3.5) implies that v ¢ G. On the other hand we have

Assertion 3.6. € G'.

Proof.  For t € [0,1], we put p; = lim; fyz[-tm"], where [c] denotes the
maximum integer not greater than c. It is easy to see that ¢, is well defined
and is a one-parameter group of transformations. It is also easy to see that
©1 =~ and g, € G. Therefore v € G’ as desired. q.e.d.

This is a contradiction. The proof of Sublemma 3.4 is now complete.

4. Nilpotency of the local group G

Lemma 4.1. The Lie algebra g of G 1s nilpotent.

Proof. Take a small neighborhood W of the identity in L such that
lmp ()|l < 0.49 holds for each element v of W NG and p € B(1/2) (see
1.4 and 1.1). Now Lemma 4.1 follows from the following:

Lemma 4.1. There exists a neighborhood W' of the identity in W such
that the n-hold commutators of the elements of G; NW' are well defined in G
and vanish.

Remark 4.3. This corresponds to (12, 8.50]. In order to prove this
lemma following the line described there, we have to overcome the difficulty
pointed out in [2, Remark 3.1.6]. But the author cannot do this directly.
Instead, we shall use the result of [6], and proceed as follows.

Proof of Lemmma 4.2. By the result of §3, we see that there exists a point
p in each neighborhood of 0 in B such that {v € g | v(p) = p} = {1}. Hence, a
neighborhood V' of 7(p) in B /2(po, X) is a Riemannian manifold. Therefore,
by the main theorem of [6], we conclude that, for each sufficiently large ¢, there
exists a fiber bundle f;: U; — V from a neighborhood U; of m;(p) in M; to V,



12 KENJI FUKAYA

such that the fiber of f; is an infranilmanifold. Furthermore, §5 of [6] implies
that there exists a positive number ¢ independent of 7 such that G;(p,¢) is
a sub-local group of the fundamental group of the fiber of f;. {Remark that
Gi(p, €) coincides with what is called a local fundamental pseudogroup at the
beginning of [6, §5].) Moreover, by virtue of the inequality ||m, ()| < 0.49, we
see that the fundamental group of the fiber of f; itself is nilpotent, without
taking a finite covering (see the argument in {2, Chapter 3]). Hence every
n-hold commutator of elements of G;(p,e) vanishes. «
On the other hand, it is easy to see that there exists W' such that

Gi(p,€) D W' N G;

for every ¢. This completes the proof.

5. The proof of Theorem 0.5
Let g denote the Lie algebra of G and, for p € B(1/2), put

b, = {¢ € 5] £(p) = O}.

Lemma 5.1. b, s contained in the center of g.

Proof. (The following argument was suggested to the author by Hisayosi
Matumoto.) Let £ € h,. Since the closure of the one-parameter group of
transformations associated with £ is compact, it follows that the adjoint rep-
resentation g — ¢, n — [n, €] is semisimple. Therefore, if £ is not contained in
the center, there exists 7 € g® C such that [, ] = an and « # 0. But, then
the Lie subalgebra C¢ @ C# is not nilpotent. This is a contradiction. ~'q.e.d.

The function which carries p to dimb, is uppersemicontinuous. Hence,
there exists a positive number C such that, for each element p of B(C),

(5.2) dimb,, < dim ho.

Lemma 5.3. b, C by for each element p of B(C/6).

Proof.  The proof is by contradiction. Take £ € h, — hy. Let ¢; be the
one-parameter group of transformations associated with €. Since the closure
{p: | t € R} is compact, we may assume, by replacing £ if necessary, that ¢
is the identity. Put

A ={g€ B(1/2) | n(q) = 0 for each 1 € bhp}.

A is totally geodesic because all elements of g are Killing vector fields. Since
p € B(C/6) and since @4(p) = p, it follows that

(5.4) d(4(0),0) < C/3.
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On the other hand, since by is contained in the center, we have ¢;(0) € A.
Now, define a p;-invariant function f on B(C)N A by

flg) = /0 d(p:(0),q) dt.

Since A is totally geodesic and since C < 1, it follows that f is a strictly
convex function. On the other hand, formula (5.4) implies that

flg) = 2C/3 for g € 8B(C), f(0) <C/3.

Therefore, f has a unique minimum g9 on A N B(C). Then v;(gs) = qo.
It follows that £ € b,,. On the other hand, by, D ho. Thus, we conclude
dim by, > dimbo. This contradicts (5.2). q.e.d.

For a point p of B(1/2), we put

H, ={v€ G |~(p) =p}

and let H,, denote the component of the identity of Hp.

Lemma 5.5. There exists a positive number C' such that H, & Hy for
each point p of B(C'/6).

Proof.  For a point p of A, put x(p) = #(Hp/H,). It is easy to see that
x(p) is uppersemicontinuous on A. Then there exists a positive number C’
such that for each element p of B(C') N A, we have x(p) < x(0). Now, we
shall prove by contradiction that this number C’ has the required property.
Suppose that p € B(C'/6) and v € H, — Hp. Lemma 5.4 and the compactness
of H, imply that there exists a positive integer m such that 4™ is contained
in Hg. Put

A' = {pe B(C") | 7(p) = p for each v € Hp}.

Define f': A’ - R by
fl(z) =) d(v(2),2).
i=1

f' is 4-invariant, since v"(z) = 2. Hence, as in the proof of Lemma 5.4, we
can find ¢ € B(C') N A’ such that v(gq) = q. Therefore H, D Ho U {v}. It
follows that x(g) > x(0). This is a contradiction. q.e.d.

Lemma 5.1 implies that Hy is a torus. Hence (B(C’/6),0)/Hy is smooth.
Since Hy is compact, Ho/H is a finite group. Therefore, (B(C’/6),0)/Hy
is also smooth. Furthermore, using Lemma 5.5, we can prove that Hg is
normalized by Go. Therefore, GoHy/Hg acts on (B(C'/6),0)/Hg. Then
Lemma 5.5 immediately implies that the action of Go-Ho/Hp on B(C'/6)/Hy
is free. Tt follows that (B(C'/6),0)/HyGg is smooth. Next, we need the
following:

Lemma 5.6. There exists D such that G(0, D) is contained in HoGy.
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Proof. Suppose that there exists a sequence -; of elements of GG such that
~i € G(0,1/1) — HyGyp. By taking a subsequence if necessary, we may assume
that ~; converges to an element ~. Then ~(0) = 0. Therefore v € H. On
the other hand, lim;_,, ¥~ 14; = 1. Hence v~ 1v; € Gy for sufficiently large 1.
Therefore, v; € HoGg. This is a contradiction. q.e.d. '

Lemma 5.6 implies that Bp(p, X) is isometic to (B(D),0)/HoGo. This
completes the proof of Theorem 0.5.

CHAPTER 2

GENERALIZED FIBER BUNDLE THEOREM

6. A compactification of the set of frame bundles

In this chapter, we deal with Problem 0.3(B). One of the difficulties of this
problem lies in the fact that the metric space X there is not necessarily a
manifold. To avoid this difficulty, we consider the frame bundles. We put

FH (n,D)={FM | M e .#(n,D)},
FPty, ={(FM,p) | M € M(n,00)}.

(The Riemannian manifold FM is defined in 1.3.) Let &%# (n,D) and
EFFPH, denote the closures of F# (n,D) and FPH#, with respect to the
Hausdorff distance and the pointed Hausdorff distance respectively. By virtue
of the results presented in [17], there exist positive numbers C; (n) and Ca(n)
depending only on n such that

FH (n, Dy C M (n+ (n—1)(n—2)/2,D + C1(n) | C2(n))

and FRH#, C F#,(Cz(n)) (see 1-5). It follows that EF# (n,D) and
CF Py, are compact. Now, the main result of this and the next sections
is the following:
Theorem 6.1. There exists a positive constant Cz(n) depending only-on
n such that the intersection of EFFPH, with
n+{(n—1)(n—2)/2
U Ptk (Cs(n))
k=0
is dense in EFFPH,, with respect to the pointed Lipschitz distance.
Proof.  Let (X,qo) be an arbitrary element of €7%#,. Take a sequence
of elements (FM;, g;) of FP#, such that lim; oo du((FM;, ¢:), (X, 90)) =0.
Let m;: FM; — M; denote the natural projection. Put p; = m;(¢;). By an
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argument similar to one in §2, we may assume, by taking a subsequence if
necessary, that

[VER(M;)|| < Ck.

In this section, we shall prove that, in that case, X is a Riemannian man-
ifold. And, in the next section, we shall give an estimate on the sectional
curvature of X. It suffices to show this in a neighborhood of ¢q.

First remark that we may assume, by taking a subsequence if necessary,
that (M;,p;) converges to a pointed metric space (Y, pg) with respect to the
pointed Hausdorff distance. We may assume that dg((M;,pi), (Yipo)) <
1/i and dua((FM;,¢.), (X,q90)) < 1/i. Let ¢;: (X,q0) — (FM;,q;) and
wit (Y,po) — (Mi,p;) be (1/7)-pointed Hausdorff approximations.

Next, we recall the argument of §3. There we defined pairs ((B(1/2), g;), G:)
and {(B(1/2),g90),G) such that B(1/2)/G; and B{1/2)/G are isometric to
By /9(pi, M;) and By /9(po, X) respectively and that G is locally isomorphic to
a Lie group.

Now, we can lift the isometric actions of G; and G on (B(1/2),g;) and
(B(1/2), go) to those on (FB(1/2),g;) and (FB(1/2), go) respectively, where
g; and go denote the Riemannian metric defined in 1.3. Since the action of
G on B(1/2) is isometric, it follows that the action of G on FB(1/2) is free.
Hence FB(1/2)/G is a Riemannian manifold.

On the other hand, it is easy to see that

Jim de st ((FB(1/2),6:): G, 0), (FB(1/2), §o), G, 0)) = 0.
(The symbol d g, is defined in 1.9.) Hence, Lemma 1.11 implies that
lim dg(FB(1/2)/Gs, FB(1/2)/G) = 0.

" On the other hand, it is easy to see that FB(1/2)/G; is isometric to a neigh-
borhood of g; in FM,. Therefore FB(1/2)/G is isometric to a neighborhood. -
of ¢o in X. Thus X is a Riemannian manifold, as required. '

7. An estimate on sectional curvatures

We begin by proving a lemma.

Notation 7.1. Let G be a local group of isometries acting freely on a :

pointed Riemannian manifold (M, p). We put

(r/t)p(G) = sup{|Irp(9)||/d(g(p),p) | g € G, g # 1, 1p(g) is well defined}.
(The symbol 7,(g) is defined in 1.4.)
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Lemma 7.2. Suppose that the sectional curvature of M is not greater
than a and not smaller than b. Then the sectional curvature of M/G at
P(p) 1s not greater than a + 6((r/t),(G))® and not smaller than b, where
P: M — M/G denotes the natural projection.

Proof. Put g= P(p). Let A be an arbitrary plane contained in T (M/G).
Take the plane A in T, (M) such that dP(A) = 7 and A is perpendicular to
the orbit G(p). Let K, and K, denote the sectional curvatures. For £ € A
and t € R, we see easily that

(7.3) - P(exp(t§)) = exp(t(dP(£))). ,
Now, let 7: S — A be the isometry onto the unit sphere. Recall the
following formula.

(7.4) /Ot l{exp(s >~ 1)) ds = wt? — 7FKAt4/12 + O(t%),

where [{exp(t - 1)} denotes the length of the loop, 8 + exp(t - 7(6)). Similarly,
using (7.3), we see that

75 /O " 1(Plexp(s 1)) ds = mt? — TKt4/12 + O(t9).

Now, let gé(@d, t) denote the angle between

Dexp(t-i(6))
dé

Then, it is easy to see that

and  Texp(s-i(60)) (G (exp(t - i(60)))).

8=0o

: : H{P(exp(t-1))) _ . .
(7.6) 1> e 7)) > 1nf{51n(¢(é, t)) |6 € 81},

On the other hand, by the definition of (r/l)?, (G), we have
. - 2
(7.7) lim sup 213{1 — inf{sin (8,t) | 6 € S1}] < ((r/l);(G)) .
t—0

Now, by (7.4), (7.6) and (7.7), we have
nt? — mt*Kp /12 + O(t%)

> [ p(exp(s ) ds |
[}
> w2 — wti Ky /12 — 7t ((r/1),(G))? /2 — O(#°).

From this formula and formula (7.5), the lemma follows immediately.  g.e.d.
Next, we shall prove the following:
Lemma 7.8. Let (M;,p;) be a sequence of elements of EF#,, converging
to a smooth element (X, po) of ERH,. Suppose that the sectional curvatures
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of M; ot p; are unbounded. Then the dimension of the group Gp, in Definition
0.4 1s positive.

Proof.  Let (M;;,pi ;) be elements of 4, such that

dn((Mi,5,pi5). (Mi, pi)) < 1/5.

As in §2, we may assume |[V¥R(M, ;)| < Cix. Hence, by the method of
§3, we can construct metrics g;;, g;, go on B and local groups G;;, G,
G consisting of isometries of (B(1/2),9:;), (B(1/2),¢:), (B(1/2),g0), such
that the quotient spaces B(1/2)/G;;, B(1/2)/G;, B(1/2)/G are isometric
to neighborhoods of p;;, p;, po, respectively. Then, Lemma 7.2 implies
that the sectional curvatures of M, at p; are not smaller than —1 and not
greater than 1 + 6 - ((r/t)o(G;))?. Therefore, by assumption, we see that
the numbers (r/t)o(G;) are unbounded. Hence, by taking a subsequence if
necessary, we may assume that there exists a sequence ~; € G; such that
lim; o0 ||7o(7:)]]/d(0, % (0)) = oo. It follows that we can find a sequence
of integers n; such that lim,; oo d(7)*(0),0) = 0, lim;_,o ro(7*) = A, and
that lim; ,o,n; = 00, where A € O(n) is a nontrivial element. Now for
each number ¢ contained in [0,1], we put 7y = lim,; o ”yym]. Then, n; € G,
Ny My = Mti+t2o M # 1 and ny(0) = 0. Therefore, the dimension of G,
(={g € G| g(0) = 0}) is positive. g.e.d.

Now, Theorem 6.1 follows immediately from Lemma 7.8 and the fact that
the elements of ERF#,, are manifolds, which was proved in §6.

8. The proof 6f Theorem 0.15
We begin by proving a lemma. Put
CGM(n, D) ={M € EFH# (n,D) |dimM <n+(n—-1)(n—-2)/2 -k},
CFPMn 1, = {(M,py) € EFPHy, | dimM < n+ (n—1)(n—2)/2 —k}.

Lemma 8.1.  For each ¢ there exists a positive number p(e, n) such that if
a smooth pointed Riemannian manifold (M,po) € CF Pty i satisfies
du((M,po), CF Py 11) > €, then the injectivity radius of M at py is
greater than . » ‘

Proof.  The proof is by contradiction. Assume that a sequence of
pointed Riemannian manifolds (M;,p;) € BF P, i satisfies du((M;,p;),
GF Pty k+1) > € and that the injectivity radius of M; at p; is smaller than
1/:. By virtue of the compactness of €F%#,,, we may assume, by tak-
ing a subsequence if necessary, that (M;,p;) converges to an element (X, po)
of €FPH#,. Then, since the absolute values of sectional curvatures of M;
are bounded, (12, 8.39] implies that the Hausdorff dimension of X is strictly
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smaller than that of M;. But, since du((M;, pi), EF Pty k+1) > €, it follows
that X ¢ BF P, k+1. This is a contradiction.

Proposition 8.2. There exist positive numbers €1,€s, - , € depending
only on n such that the following holds.
Suppose

X € €9 (n,D),Y € €F# (n, D) — €5y (n, D),

and
du(X, €FM+1(n, D)) > €x11-

Assume, furthermore, that dg(X,Y) < ek.

Then, there exists a map f: X — Y satisfying the following:

(8.3.1) f s a fiber bundle with an infranilmanifold fiber.

(8.3.2) f is an almost Riemannian submersion. Namely, if £ € T,(M) is
perpendicular to o fiber of f, then we have

@) < (/g < e @5,

where 7(c) is a positive number depending only on ¢,n and D and satisfying
lim,—q7(c) = 0.

Proof. This is an easy consequence of Theorem 6.1, Lemma 8.1 and the
main theorem of [6].

Proof of Theorem 0.15. Define the subsets % of EFFHi(n,D) by a
downward induction on k as follows.

Uny(n—1)(n—2)/2 = CFMlpi (n—1)(n-2)/2(n, D),
Uy = CIM(n, D) — (J{X € €F#r(n, D) | du(X, %) < &:}.

i>k
(Remark that €F#(n, D) is empty for k > n+(n—1)(n—2)/2.) Then Lemma
8.1 implies that there exists a positive number u such that the injectivity radii
of the elements of | | #), are greater than p. This fact, combined with Theorem
6.1, the compactness of Z and {12, 8.25], implies that there exists a finite set
3 of manifolds such that every element of | | % is diffeomorphic to an element
of T. ‘

Now, let M be an arbitrary element of FM(n,D). Then, by the definition
of %, we see that either F'M is contained in % or there exist k and X €
& FMy such that dg(FM, X) < ek and du(X, EF#+1) > €k+1. In the former
case, F'M is diffeomorphic to an element of X. In the later case, Proposition
8.2 implies that there exists a map f: FM — X satisfying conditions (8.3.1)
and (8.3.2), and that X is diffeomorphic to an element of X. The proof of
Theorem .15 is now complete.
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9. Equivariant fiber bundle theorem

To deduce Theorem 0.12 from Theorem 6.1, we need the following equi-
variant version of the result of [6]. (The symbol dg.g is defined in 1.12.)

Theorem 9.1. Let G be a locally compact group and let n, u be positive
numbers. Then there exists a positive number €(n, u) depending only on n and
u and satisfying the following.

Suppose M, N are Riemannian manifolds on which G acts as isometries.
Assume dg.u(M,N) < e, M € #(ny,00), N € # (ng,00,u), n1, nz < n.
Then there exists a G-map f: M — N satisfying (8.3.1) and (8.3.2).

Proof. There are two methods to prove this result. The first one is to
construct f using the result of [6] and to make it a G-map using the center of
mass technique (see [13]). The second one is the combination of the methods
of [6] and [5, §7]. Here we shall give a proof following the second line. By
assumption, we have an e-G-Hausdorff approximation ¢’': M — N (see 1.6).
We can modify this map and we can assume that @ is a measurable map.

Secondly we use a Hilbert space version of the technique of [12], [14] or
[6, §1]. Let h: R — [0,1] be a function satisfying [6, Condition (1.3)]. And
let L?(N) denote the Hilbert space consisting of all L2-functions on N. The
group G acts on L%(N) in an obvious way. Define fy: N — L%(N) and
fig: M — L3(N), far: M — L%(N), by

(fn(p)(g) = h(d(p,q)),
(fr@)(g) =h (/GB » )d(p,x) d’w’/VOI(Be(SD(Q)7M)))7

fu()(q) = F(9(®)(9(0))ua(g),

geG

where ug denotes the Haar measure. Then, by a method similar to [6], we
can prove the following.

(9.2.1) fn is an embedding.

(9.2.2) Put

Bo(Nfn(N)) = {(p,u) € the normal bundle of fi(N)] |lul| < C}.

Then the restriction of the exponential map to Bo (N fx(N)) is a diffeomor-
phism, where C is a positive number depending only on n and .

(9.2.3) far is of Cl-class.

{9.2.4) The image of fas is contained in the 66—ne1ghborhood of fn(N).

(9.2.5) far is transversal to the fibers of the normal bundle of fx (N). (Here
we identify the tubular neighborhood to the normal bundle.)

(9.2.6) fa and fn are G-maps.
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Now, we put f = fy' omoExp™'ofy. Facts (9.2.2) and (9.2.4) imply
that f is well defined. Fact (9.2.3) implies that f is of C!-class. Fact (9.2.6)
1mphes that f is a G-map. Fact (9.2.5) implies that f is a fiber bundle. The
rest of the proof is similar to [6, §§4 and 5], and hence is omltted The proof
of Theorem 9. 1 is now complete.

10. The proof of Theorem 0.12

Our result from Problem 0.3(B) in the case when X is general is the fol-
lowing. , L .

. Theorem 10.1. . Let X, be a sequence of elements of &# (n, D). Suppose
X; converges to a metric space X with. respect to the Hausdor[f distance. Then,
for sufficiently large 7, there exist a map f: X; — X, metric spaces'Y; and Y.
on which O(n) acts as isometries and an O(n)-map f: Y; — Y, such that the
following holds. A ,

(10.2.1) X; and X are zsometrzc to Y;/O(n) and Y/O(n), respectively. (We
let m;: Y; = X, m: Y — X denote natural projections.) o

- (10.2.2) Y; and'Y are Riemannian manifolds with continuous metrw ten-
sors and C1®-distance function..

(10.2.3) f satisfies conditions (8.3.1) and (8 3.2).

(10.2.4) Let p; € Y;, pe Y. Then {g € O(n) | g(p) = p} is dsomorphic to

Gr(p) (which is defined in 0.4), and similarly for p;.

(10.2.5) from, =mo f. ,

Theorems 0.12 and 0.14 are direct consequences of Theorem 10.1. Theorem
0.7 follows immediately from Theorem 10.1, Lemma 7.8 and {12, 8.39].

Proof of Theorem 10.1. Take M ;€ M (n, D) satisfying dy (M; g2 Xi) <
1/7. Lemma 1.13 implies that, by taking a subsequence if necessary, we may
“assume that - '

dom)-u(FM; j, FM; /) < 1/ min(j,5') + 1/ min(4,7').

Therefore, there exist K,Y € FH (n, D) on which O(n) acts as isometries
such that

(103) do(n)-n(F M ;,Yi) < 1/3, domy-n(Ys,Y) < 1/i.

Theorem 6.1, combined with [9], implies that ¥; and Y satisfy (10.2.2). In-
equality (10.3); combined with Lemma 1.11; implies (10.2.1). Theorem 9.1
implies that there exists an O(n)-map f:Y; — Y satisfying (10.2.3). Hence,

there exists f: X; — X satisfying (10.2:5). It is easy to verify (10.2.4). The
proof of Theorem 10.1 is now complete. :
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